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A three-dimensional model for prediction of concentration fluctuations in isotropic 
homogeneous turbulence is presented. The model is based on calculating the Lagrangian 
trajectories of a particle pair, taking into account the interaction between the particle 
velocities. The velocity correlation function at a given instant is taken as the Eulerian one. 
This correlation function is constrained to obey the continuity condition, due to the fluid 
incompressibility. The proposed model was used to study concentration fluctuations for three 
different sources: An uniform sphere, a plane source, and a line source. Results for the plane 
source differ from those predicted by the one-dimensional model. This difference may be 
attributed to the compressibility condition in the one-dimensional model (P. A. Durbin, 
J. Fluid Mech. 100, NO. 2, 279 (1980)). 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The statistics of concentration fluctuations of a passive scalar in a turbulent 
medium is a problem of wide ranging interest with applicability to air quality 
modelling, smoke obscuration, chemical reactions, hazard estimation of toxic gases, 
and combustion problems. 

The techniques to predict these fluctuations are divided into two classes. The first 
one includes all models based on the Eulerian approach, i.e., the diffusion and the 
flow field are looked at fixed points in space. Examples of such models are the 
gradient transfer approximation or higher order closure to the diffusion and the 
flow equations ([3, 18, 121, and others). In this approach the length scale of t 
turbulent field must be small compared with that of the contaminant cloud, a 
restriction which is not always satisfied. In addition, these models are based on 
unverified closure assumptions. The other class of techniques is the Lagrangian 
approach based on assumptions concerning the Lagrangian statistics of the par- 
ticles. In both approaches those assumptions cannot be verified directly, and the 
models are judged by their success in predicting a measured quantity. There are 
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many Lagrangian models that are able to predict the first moment of the concen- 
tration fluctuations ([ 19, 81 and others), some of them applicable to three-dimen- 
sional inhomogeneous turbulence [20]. On the other hand, there exist only one- 
dimensional models which are able to predict the second moment of concentration 
fluctuations, taking into account the interaction among the particles. These models 
are based on two approaches for estimating the relative velocity. The first approach 
[15, 131 is based on the assumption that the relative diffusion of a pair of particles 
is a function of the ensemble averaged mean square relative separation [l]. The 
assumption results in a Gaussian distribution for the relative separation of the pair 
of particles that causes the fluctuation intensity to decrease inversely proportional 
to the square root of time [16]. This result contradicts experimental features. 

The other approach [14] relates the relative velocity of the particle pairs to their 
instantaneous separation. This assumption formulated in the one-dimensional 
model of Durbin [4], and in the authors’ model [9], leads to a non-Gaussian 
distribution of the relative distances and thus results in a fluctuation intensity that 
tends asymptotically to a constant value as time increases. 

In spite of the fact that one-dimensional models give valuable information on 
experimental features, one must be cautious in calculating statistical fluctuation 
concentrations. This care is required because one-dimensional models describe com- 
pressible flow, and the effects of this condition on the results cannot be isolated. 

We found it interesting to formulate the Richardson assumption in a three- 
dimensional flow, constrained to be incompressible. In this way, we could verify the 
consequences of Durbin’s model, that the Richardson assumption leads to concen- 
tration fluctuation intensity that depends on source size, but in contrast to Durbin’s 
results, the fluctuation intensity calculated by our model, decreases slowly with 
time. 

In Section 2, we describe the statistics of concentration fluctuations emphasizing 
the influence of compressibility of the flow. In Section 3, we formulate a three- 
dimensional model for the Lagrangian motion of particles in a turbulent field 
including the interaction among them. This model is constrained to describe incom- 
pressible flow. In this paper, we discuss only the case of homogeneous isotropic 
turbulence. 

In Section 4, a numerical method for calculating concentration moments is 
described. Results of our calculations for special sources are represented in 
Section 5. 

2. CONCENTRATION FLUCTUATIONS 

2.1. Definition at a Given Point 

We adopt the definition of concentration fluctuations suggested by Durbin [4]. 
According to this definition the concentration at a given point r at time t is given 
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by averaging the instantaneous concentration over a small volume V, of order q 
around r, i.e., 

C(r, t) = + J‘, c”(r’, t) d3r’ 
11 

where c”(r, t) is the instantaneous point concentration and y the Kolmogorov l~~gtb 
scale. By taking the limit V, --f 0 we mean that ( V,,/L3) -+ 0, where L is the 
turbulent integral length scale. This definition takes into account smearing by 
molecular action and by finite measurement probe size. The concentration 
fluctuations are determined primarily by the dynamic of eddies in the subi~e~t~a~ 
range. 

2.2. Statistics 

The moments of concentration fluctuations can be calculated in terms of forward 
or reversed diffusion [16, 4, 61. We define the N-particle probability function for 
the forward diffusion, 

P,(r,, . . . . rN, t; r;, . . . . rl,, 0) d3r; . ..d3r., 

as the probability that N particles located at time t = 0 at vi, . . . . rh will arrive at 
time t at locations rl, . . . . Ye, respectively. The N-particle probability function for the 
reversed diffusion, 

PN(r;, . . . . rl,, 0; rl, . . . . r,,,, t) d3r’, ...d3rh 

is defined as the probability that N particles which are located at rI, . . . . r,,, at time t 
came from locations r;, . . . . rX at time t = 0. For incompressible flow, it was prove 
by Egbert and Baker [6] that 

P,(r,, . . . . rN, t; r;, . . . . rh, 0) = PN(r;, . . . . i-h, 0; rl, ~.., rN, tj 

and that the Nth moment of the concentration fluctuations is given by 

( CN(r, 2)) = lim 
1.i s ... S(r’) P,(r,, . . . . rN, t; r;, ..I, rl,, 0) d3r’, ... d3rh 

Ilr ,r‘v-r 

= lim .i.l s 
. . S(f) PN(r;, . . . . rl,, 0; rl, . . . . rN, t) d3r’, ...d3rh (2.3) 

‘1. ,INdi- 

where S(r’) = S(r; ) ’ . . S(rh) is the source function. 
It is more convenient to calculate the Nth moment, using reversed diffusion. This 

can be done by Monte Carlo methods. One has to follow trajectories of N particles 
backward in time and to find their location r;, I..) rX at time t = 0. Then assign the 
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particles the concentration S(r;), . . . . s(rk) correspondingly. If one repeats this 
procedure A4 times the integral in Eq. (2.3) is given by 

(C”(r, t)) =$ f S(r;)ck). . . s(r>)ck) 
k=l 

(2.4) 

where rik) denotes the values of ri in the kth realization. To solve the trajectories of 
the particles, one has to know their Lagrangian velocity equations, including the 
correlations between them. The particle trajectories are computed in reversed time, 
but because the turbulence is stationary, we did not reverse the evolution of the 
turbulence. In Section 3, our model assumption for the two-particle equations of 
motion are formulated and the procedure to calculate first and second moments of 
the concentration fluctuation distribution is described. The procedure of reversed 
diffusion is valid because of the incompressibility of the flow. 

In compressible flow 

P,(r,, . . . . rN, t; r;, . . . . rh, 0) # PN(r;, . . . . rh, 0; rl, . . . . rN, t); 

therefore a different interpretation should be given to the integral 

lim s1 S(r;) S(r;) . P,(r,, r2, t; r;, r;, 0) d3r; d3r; 
r,,‘*-’ 

and to the integral 

lim ss S(r;) S(r;) . P2(r;, r;, 0; rl, r2, t) d3r; d3r; 
r,,r* -+ r 

(2.5) 

(2.6) 

The first integral is the second moment of the concentration fluctuation dis- 
tribution, while the concentration is defined as the number of contaminant particles 
per unit volume [6]. The second integral is the second moment of the mass-specific 
concentration fluctuations, while the mass-specific concentration is defined as the 
ratio of the number of contaminant particles to the number of fluid particles in unit 
volume [ 171. The use of either the first definition for concentration or the second in 
compressible flow depends on the specific problem that one is investigating. 

In Durbin’s [4] one-dimensional model and its generalization to include 
molecular diffusivity [17], the flow field represented by the equation of motion of 
particles is compressible [6, 161. Therefore the fluctuation intensity calculated by 
this model using the technique of reversed diffusion is for the mass-specific concen- 
tration. On the other hand, concentration fluctuations calculated using the forward 
diffusion technique in the one-dimensional model [9] includes contribution from 
compressible fluctuations. Therefore one should be careful in applying the results of 
both models to analyze the fluctuation statistics in incompressible flow. 
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The physical concepts formulated in Durbin’s model and in its generalization [9] 
for the 1-D case can be generalized to the three-dimensional model constrained to 
fulfill the incompressibility condition. This is done in Section 3. 

3. PARTICLE MOTION IN THE TURBULENT FIELD 

3.1. Equation of Motion for the Particles 
We assume that two particles move in a homogeneous isotropic three-dimen- 

sional incompressible turbulence field. The Lagrangian velocities of the particles 
vl, u2 are described by the equations 

u,(t + At) = R,(At) VI(t) + Jw) O(r,(t)), 

v,(t+At) =R,(At) Q(t) + Jl -Rk(At) s(r,(t)), 

r,(t + At) = r,(t) + ul(t) At, 

r2(t + At) = rZ(t) + u*(t) At, 
(3.1) 

UI(O) = e(rl(0)), 

QO) = e(r2(0)) 

where R,(At) = exp( -At/T,) is the Lagrangian-time correlation function an 
stationary turbulence depends on the time lag At. O(r) is a random field. 
convenience, we shall omit the vector notation throughout this paper to a 
confusion. We assume that at a given instant the spatial correlation betwee 
components of O(r) is equal to the spatial Eulerian velocity correlation of the 
turbulence field. Therefore the covariance matrix C of the random field e(r) is e 
to the covariance matrix of the Eulerian field. We show in detail in Appendix B that 
the Lagrangian motion of fluid particles described in Eq, (3.1) is equivalent to the 
motion of fluid particles in an incompressible Eulerian velocity field in the 
subinertial range, i.e., where viscosity forces can be neglected. If we assume that the 
part of the Eulerian field which is not correlated in time is responsible for the 
random part of the particles’ acceleration, it is reasonable to take the covariance of 
O(r’) to be equal to that of the Eulerian field. However, in our model this was taken 
as an assumption and has no theoretical rigorous justification, except that it is 
compatible with the Eulerian distribution function (see Appendix B). 

Following Durbin [4] we define two variables, 

A = (rl - rd/fi, 
Y= (rl + rd/$ 

(3.2) 

where r,, r2 are the locations of the two particles, A is proportional to the relative 
distance between the particles, and Y is proportional to their center-of-mass 
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location. The constant of proportionality is chosen only for simplicity of the 
calculations. 

The equations of motions for A and Y are 

In homogeneous turbulence, the covariance of the velocities at two different points 
depends only on the distance between those points. If we assume that O(r) has a 
trinormal distribution function, the sum of O(r,) and O(r,) and their difference also 
have a trinormal distribution function with covariance that depends only on the 
relative distance between the particles. We have to specify the covariance matrix of 
the Eulerian field. The homogeneous isotropic turbulent field is easy .to treat 
because the covariance tensor of the velocities C(d) is invariant to displacement or 
rotation of the coordinate system. Therefore [ 111, the correlation tensor has the 
form 

C,(A)=A(lAJ)AjAj+6,B(lAI) (3.4) 

where IAl = (A: + Ai + A:)‘.‘. 
The incompressibility of the fluid yields another condition through the continuity 

equation: 

This implies that the whole covariance tensor is expressed in terms of a scalar 
function of r. This scalar function can be determined by the one-dimensional 
correlation function: 

where 0: is the velocity variance andfa 1-D function. 
Using (3.4), (3.5), and (3.6), we get 

A.A. 
C,(A)=a~ -0.5’ 

i 
,A, f’(lAI)+~,(f(lAl)+0.5 lAlf’(lAl)) 1 . (3.7) 

This is the expression for the Eulerian covariance matrix of the points whose 
relative distance is A. Let us define 

y= (Wd - W-,&i 
@ = WI I+ W-d)/JZ. 

(3.8) 
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Y is a random field with covariance matrix o:l-- C and @ is a random field with 
covariance matrix o:Z + C where I is the unit matrix. Equation (3.8) and the 
expression for C (Eq. (3.7)) completely determine the two-particle motion in the 
field. 

4. NUMERICAL PROCEDURE 

4.1. Algorithm for Calculating Particle Trajectories 
The numerical technique for the solution of Eq. (3.3) is divided into two steps. In 

the first stage, the relative distance A of the particle pair and its center-of-mass 
coordinate Y are changed, given their derivatives at time t: 

A(t + At) = A(t) + VA(t). At, 

Y(t+At)= Y(t)+v,(t).At. 

Then the relative velocity vd and the center-of-mass velocity v, are determined 
according to the equations 

v,(tiAt)=v,(t)exp(-At/T,)+ l-exp(-2At/T,)Y, 

v,(t-t-At)=v,(t)exp(-At/T,)+ l-exp(-2At/T,)@ 

where Y and 6, are random vectors, the components of which are normally dis- 
tributed with covariance -which depends on A, and defined by (3.7). The procedure 
to generate those random vectors is given in Appendix A. The main steps of t 
algorithm at a given time t are therefore: 

(1) Calculate the matrix C, according to (3.7). 
(2) Calculate the matrices ,I,, A,, Eq. (AS). 
(3) Draw iI, c2, two random vectors with independent random components, 

each of which is normally distributed with zero mean and variance 1. 
(4) Calculate !P and @ according to Eq. (A.6). 
(5) Calculate vd, v, according to Eq. (4.2). 
(6) Calculate A(t f At), Y(t + At) according to Eq. (4.1). 

4.2. Calculation of Concentration Moments 
For calculating concentration moments, we have used the process of reversed 

diffusion [2] in the same way it is used in Durbin’s [4] model. We solve for the 
initial posiion of the particles r 1, r2 given their position at time t, where they nearly 
coincide. r1 and r2 are given in terms of A and Y: 

rl=(Y+A)/> 

r2=(Y-A)/&. 
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To particle 1 we assigned the concentration CI(r, t) = S(r,) and to particle 2 the 
concentration C,(r, t) = S(r,) where S(r) represents the initial source distribution. 
The moments of the concentration (see [4]) are given by 

(4.4) 

(4.5) 

C, represents the fluctuation intensities, and C, is the value of Ci(r, t) in the nth 
realization. 

4.3. Numerical Values of the Parameters 

The values chosen for the parameters in this work are the Lagrangian time scale 
TL = 1 (set), the Eulerian length scale L, = 1 (m), and the Eulerian velocity stan- 
dard deviation (T, = 0.6 (m/set). These values are connected by the nondimensional 
equation 

L,a,/T, = 0.6 

(see [S, 91). The value of At is chosen as 

At=O.O5T,. 

The number of realizations M = 100,000. f( 1 Al ) is the one-dimensional correlation 
function which appears in Eq. (3.7), and was chosen to be the same as in the one- 
dimensional model of Durbin [4]: 

f(lAl)= 1 -(142/W12+L~))1’3 (4.6) 

5. RESULTS AND DISCUSSIONS 

Averaged concentration and fluctuation intensity of concentration fluctuations 
were calculated using the numerical technique described in Section 4. These quan- 
tities were calculated for three different sources: a three-dimensional Gaussian 
source with standard deviation oO, an infinite line source with cross section of a 
bi-Gaussian shape, and a plane source with a Gaussian shape with standard 
deviation oO. Different values were chosen for co: 0.7L,, 0.35LE, O.l7L,, and 
O.O8L,, where L, is the Eulerian length scale of the velocity fluctuation field. In 
Fig. 1, we represent the averaged concentration at point (0, 0,O) as a function of 
time. The one-particle probability function described in our model is calculated 
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T/TL 

FIG. 1. The average concentration at the source center as a function of time: (a) for plane source; 
(b) for line source; (c) for sphere source. Theoretical predictions are denoted by lines, simulated values 
are denoted by q (u0=0.7LE). 

using the trajectories of one particle. Equations (3.3) and (3.7) show that each com- 
ponent of the velocity field is a Uhlenbeck-Ornstein process, independent of the 
other component. Therefore, the one-particle probability density function 
c#J~(OOO, xyz) [22] is given by 

hW4 XYZ) = exp( - (x’ + y2 + ~~)/W~,(r!))/((fi)~ o:,(t)) 
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a,(t) = dm(exp( - t/TL) + t/TL - l)l/* 

where oVP is the standard deviation of #1. 
The averaged concentrations for the three sources are easily calculated, and are 

given by 

C p,ane = exp( -0.5~%2, + ~tY)~#GiiGQ 

Cline = w( -0.5(x2 + Y’Y(d + 4)YC&4 + kfp)l, (5.2) 

C sphere = exp( -0.5(x2 + y* + z’)/(u~ + o~,))/[J%(rr~ + o~,)]~/*. 

FIG. 2. Fluctuation intensity CJ JC at point (O,O, 0) as a function of time: (a) For plane source: 
q , u,,/LE = 0.7; 0, uo/LE = 0.35; A, u,/LE = 0.17; +, u,,/LE = 0.08. (b) For line source: 0, oO/L, = 0.7; 
0, cr,/& = 0.35; A, CT,,/L~ = 0.17. (c) For sphere source: 0, ao/LE = 0.7; 0, uO/LE = 0.35. 
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In Fig. 1, we compare the theoretical predictions with the simulated value at the 
source center. The theoretical predictions are denoted by lines and the simulates 
values are denoted by squares. 

In Fig. 2 results for the fluctuation intensity oJC at point (0, 0,O) are presented 
as functions of time. In contrast to the one-dimensional case [4], our results s 
that the fluctuation intensity decreases with time. This decreasing is very slow, as 
time tends to infinity. Dependence of fluctuation intensity on the source size was 
found in our results, only up to t = 3T, for the case of plane source and the line 
source. Then the cloud forgets its initial dimensions and the behaviour of the 
tuation intensity is about the same for the four source sizes. In the case of the 
sphere source, there is dependence of the fluctuations on the source size, even for f 
larger than 4.5T,. Our model was also compared with wind tunnel experiments 
performed by Warhaft [21]. Remarkable agreement was found between calculate 
and measured values of the fluctuation intensity as a function of time [lo]. 

In order to show that this behaviour of fluctuation intensity is a result sf the 
incompressibility of the flow, we ran our model for the 1-D case. The equations of 
motion for this case are 

$(t+At)=exp(-dtlT,)g(t)+,/l-exp(--ZAt/T,)Jf)5 
(5.3) 

8 
“1 

FIG. 3. Fluctuation intensity 0,/c at the source center as function of time for the 1-D mode 

(Eq. (5.3)). 
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FIG. 4. Distribution of the center-of-mass location as a function of time. The center-of-mass variable 
Y is scaled by a,(t) given in formula (5.1). -, Gaussian shape; 0, at time t/TL=0.3; 0, at time 
t/T‘ = 3; A, at time t/TL = 6. 

where R(d) is the Eulerian correlation used by Durbin [4], and given in Eq. (4.6) 
and 5 is a random variable normally distributed with zero mean and standard 
deviation gV. These equations are different from Durbin’s equations [4]. 

Results of our calculations for the 1-D model are presented in Fig. 3; it is also 
found in our model that the fluctuation intensity tends to a constant value as time 
increases. We claim that this behavior is a result of the compressibility of the 1-D 
model. 

In Fig. 4, we represent the distribution of the center-of-mass variable (in the 3-D 
case) as a function of time (Y is scaled by a,(t) given in formula (4.6)). The full line 
is Gaussian and the points are Monte Carlo results for different time values. We see 
that the dependency of Y on A is very weak and the Gaussian distribution is a very 
good approximation for the distribution of Y. 

6. SUMMARY 

In this work, we represent a three-dimensional model for prediction of concen- 
tration fluctuations in isotropic homogeneous turbulence. The velocity field is con- 
strained to obey the continuity equation, due to the fluid incompressibility. Results 
show that this constraint is very important in coupling the three components of the 
velocity field. Therefore, even problems of one-dimensional symmetry like diffusion 
of an infinite plane source cannot be solved following only one component of the 
velocity field (see, e.g., Durbin [4] and Sawford and Hunt [17]). 

Our results show that for small sources, fluctuation intensity depends on source 
size, up to t=6T,. 
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Our theory can be expanded to the inhomogeneous case, but the main problem is 
to specify the three-dimensional Eulerian correlation in space. 

APPENDIX A: PROCEDURE FOR GENERATING THE RANDOM VECTORS !Y, # 

A.l. A Procedure for Generating a Tri-Gaussian Normally 
Distributed Variable with a Given Covariance Matrix C, 

Since Cii is symmetric, a unitary matrix U exists ( UTU = I), such that UTCU is 
diagonal, i.e., 

u=cu= 
L 2, 0 0 I”2 0 0 I, 0 0 

where J.r, &, 1, are the eigenvalues of C, and the columns of U are t 
corresponding eigenvectors. 

Let il, c2, [, be three independent random variables, each of which is normally 
distributed with zero mean and variances 1r, I,, &, respectively. We define 

Being a linear combination of normally distributed variables, x is also normal 
distributed and its covariance matrix is given by 

kk’ 

Therefore x has the desired properties. 

k 

A.2. The Unitary Matrix That Diagonalizes the Covariance 
Matrix C, (Eq. 3.7) 0 

The covariance matrix described in Eq. (3.7) can be split into a sum of two 
matrices. A scalar matrix 

and a matrix whose elements are given by 

Therefore, the unitary matrix that diagonalizes Aid, will also diagonalize CU. The 
matrix A,A, has a double zero eigenvalue and a single eigenvalue 1 Al’. The unitary 
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matrix U which diagonalizes didi is the matrix that rotates the coordinate system 
in such a way that one of the principal axes is aligned along the vector d. This 
matrix is not unique,. and one of the choices which we have used in our procedure is 

where d” = (A, + A,)‘.‘. For A -+ 0, U + I. 
It can be easily seen that the matrix C, will therefore have a double eigenvalue 

a~(f(JA()+0.5 (Alf’(lAl)) and a single eigenvalue atf(lAl). 

A.3. Calculation of the Random Variables @ and Y (Eq. (3.8)) 

The two random variables !P and @ (Eq. (3.8)) have covariances ~:a,- C, and 
0:6~+ C,, respectively. Therefore their covariance matrix is diagonalized by the 
unitary transformation U given in (A.4), and its eigenvalues are given by 

L$)=$)=(l-f(IAj)-0.5 /Al f’(lAl))of, 

AC’= (1 -f(lAl)) 4, 
;2&!)=@)=(1+f(IAI)+0.5 IAl f’(lAl))a$ 

(A.5) 

np= (1 + f(lAl)) G;. 

Given those eigenvalues, the procedure to calculate Y and @ as described in (A.l) 
is as follows: We draw ii, &, two random vectors with independent components, 
each of which is normally distributed with zero mean and variance 1: 

y= U(A) &G-k,> 

@= u(A) ,/(d)b, 
(‘4.6) 

where 

(A.7) 
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APPENDIX B: INCOMPRESSIBILITY OF THE VELOCITY 
FIELD DEFINED IN (3.1) 

We shall prove that (3.1) describes the Lagrangian motion of particles in an 
incompressible Eulerian field by two stages. 

First we shall show that any Eulerian distribution of velocities with zero first- 
order moments and second moments C,, = (Y! - Y,) satisfying 

A,,=r,-r,=(rj-rk,rf-ri,r:-r;), 

describes incompressible flow (Lemma 1). Then we shall show that the Lagrangian 
process Eq. (3.1) describes an Eulerian distribution function with C@(rI - r,) w 
fulfills Eq. (B.l). 

LEMMA 1. We have to show 

Vk’8( r) = 0 

at any point r, for each realization k of the field. 

ProuJ: Suppose (B.l) is not true; then for some ri and some k 

a@)(rl) 3 V . f9(k)(r,) # 0. 

If we multiply (B.3) by BP’k’(r,) and take ensemble averages, we obtain after some 
algebra: 

l j$, a(j)(rl) . eaci)(rm) = T & Cap(Alm) z 0. 
I 

Taking the divergence of (B.4), we get 

i ,f a”)(r,) V . @jr,) =$ ,i &)(rl) &)(rm) = 0 
J=l J=l 

due to the continuity of the velocity and its derivatives; it follows (for rm -+ rl) that 

t $ [a( = 0. 
J=l 

This contradicts (B.3) and then (B. 1) is true. 

LEMMA 2. The Lagrangian process (3.1) is compatible with the E~~eria~ 
distribution function in the subinertial range. 
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Proof Assuming that the process (3.1) describes the Lagrangian motion of fluid 
particles, let us denote the distribution of fluid particles in phase space at time t by 
gSrl -f,, 4 ... u,). We would like to show that if at t = 0 

gt(rl --.rn, v1 ,..vJ= g,(r, -.-rn, v1 . ..v.) 

where g, is the Eulerian distribution function, then the covariance of g, is equal to 
that of g, at any time. We shall use the following properties of g,: 

(a) All its first moments are zero: 

P-L&(ri) = 0 Vi, 01. (B.7) 

This is due to the definition of the fluctuating part of velocities as the deviation 
from the average, 

where CaB(rj - Ye) is a tensor which satisfies (B.l). This is due to homogeneity and 
incompressibility of the flow. 

ac@(Akl) 
at = F@(Akr) + ~vC”~(A~J (B.9) 

where v is the fluid viscosity and 

(see Batchelor [l, pp. 86, 1001). 
In the subinertial range where the third term in (B.9) can be neglected, we get 

In stationary turbulence the right-hand side of (B.lO) is zero.’ 

(d) For any k#Z#m, 

The proof is done by mathematical induction. 

(B.lO) 

(B.11) 

1 For the Eulerian field, we made the somewhat unrealistic assumption of a homogeneous stationary 
isotropic turbulence. 
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Assume that at time t, g, fullills conditions (B.8), (B.9), and 

Then at any time g, fulfills these conditions. 
We split the time evolution of particles in phase space into two steps. In the first 

step, the locations of particles are changed according to 

dr. --!ZVi. 
dt 

The new distribution of particles in phase space after this step is g’(r, ... rN, 
vi .. . vN). To first order in At the relation between g, and g’ is given by 

N 3 
a!?* g’(rl...rN;vl...vN)=g,(r,...r,,v,...v,)-At c c I$%. 

k=l ?=I k 

Let us define the moments generating function by 

N 

gfr, . ..r N;O1...ON)=~g(r,...r N; vl . ..vN) exp c (tbk-vk) 
k=l 

It follows from (B.13) that 

g’(r, . ..r N;~l...eh,)=g,(r,...rN;O1...~N)-At : i a% 
kzl Z=,zjpg. 

In the second step, we change the velocities of particles according to 

Since the moment-generating function of a sum of independent random variables 
is equal to the product of the moment-generating function of each variable, we 
obtain, to first order in At, 

jjttdr(rl .“r,; 8, . ..8.) = S’ (r’...r,:(~-~)e,...~I~)~,j 

.f(r, . . . r,; 8, . . 

where f is the moment-generating function of ,,/m e(r). Using (B.16), we 
finally obtain 

n 
gr+Ah -r N;O1 ..-Cl,) =@(rl . ..r.; 8, . ..O.) .f(r, ..-r,; 8, . ..0.) ( 
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where 
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P(r, . ..r,; 8, 

The moments of E are given by 

(B.20) 

(B.21) 

The first and fourth terms are zero because the first moment of g, is zero. The third 
term is zero substituting 0 = 0. The second term is zero by the induction assumption 
that at time t, g, fulfills conditions (B.1). 

(B.22) 

Using the properties of g, we get, to first order in At, 

(B.23) 

(B.24) 

Equation (B.24) proves that (B.12) is satisfied. 
The moment-generating function g of gr+dt is a product of fi and j: Therefore 

gltdr is the distribution of the sum of two independent random variables. Its 
covariance satisfies 

C”“(A,) +y C”B(~l,) = C”p(Alm). (B.25) 
L 

Since at time t =O, g,= g, and g, fulfill (B.S), (B.9), and (B.12), the lemma is 
proved. 



CONCENTRATION FLUCTUATION STATISTICS 335 

REFERENCES 

1. 6. K. BATCHELOR, Proc. Cambridge Philos. Sot. 48, 345 (1952). 
2. S. CORRSIN, J. Appl. Phys. 23, 113 (1952). 
3. G. T. CSANADY, J. Atmos. Sci. 24, 21 (1967). 
4. P. A. DURBIN, J. Fluid Mech. 100, No. 2, 279 (1980). 
5. J. W. DEARDORFF, Boundary Layer Meteorol. I, 199 (1974). 
6. G. D. EGBERT AND M. B. BAKER, B. L. Safword, 109, 339 (1983); Q. J. R. Meteorol. Sot. 110, 1195 

(1984). 
7. J. E. FACKRELL AND A. G. ROBINS, J. Fluid Mech. 117, 1 (1982). 
8. S. R. HANNA, J. Appl. Meteorol. 18, 518 (1978). 
9. H. KAPLAN AND N. DINAR, J. Fluid Mech. 190, 121 (1988). 

10. H. KAPLAN AND N. DINAR, 1988 (unpublished). 
11. L. D. LANDAU AND E. M. LIFSHITZ, Fluid Mechanics (Pergamon, New York, 1963). 
12. R. 6. LAMB, “Diffusion in the convective boundary layer,” in Atmospheric Turbulence and Air 

Pollution ModeIling (F. T. M. Nieuwstadt and H. van Dop, Eds.) (Reidel, 1982), p. 159. 
13. J. LEE AND 6. L. STONE, Atmos. Environ. 17, 2477 (1983). 
14. L. F. RICHARDSON, Proc. R. Sot. London A 110, 709 (1926). 
15. B. L. SAWFORD, J. Clim. Appl. Meteorol. 24, 1152 (1985). 
16. B. L. SAWFORD, Q. J. R. Meteorol. Sot. 109, 339 (1983). 
17. B. L. SAWFORD AND J. C. R. HUNT, J. Fluid Mech. 165, 373 (1986). 
18. R. I. SYKES, W. S. LE~ELLEN, AND S. F. PARKER, J. Fluid Mech. 139, 193 (1984). 
19. G. I. TAYLOR, Proc. London Math. Sot. Ser. 2, 20, 196 (1921). 
20. D. J. THOMPSON, Q. J. Roy. Meteorol. Sot. 112, 511 (1986). 
21. Z. WARHAFT. J. Fluid Mech. 144, 363 (1984). 
22. N. WAX, Selected Papers on Noise and Stochastic Processes (Dover, New York, 1984). 


